Welcome to 2.007! This course is a first subject in engineering design. …
Welcome to 2.007! This course is a first subject in engineering design. With your help, this course will be a great learning experience exposing you to interesting material, challenging you to think deeply, and providing skills useful in professional practice. A major element of the course is design of a robot to participate in a challenge that changes from year to year. This year, the theme is cleaning up the planet as inspired by the movie Wall-E.
This course covers the design, construction, and testing of field robotic systems, …
This course covers the design, construction, and testing of field robotic systems, through team projects with each student responsible for a specific subsystem. Projects focus on electronics, instrumentation, and machine elements. Design for operation in uncertain conditions is a focus point, with ocean waves and marine structures as a central theme. Topics include basic statistics, linear systems, Fourier transforms, random processes, spectra, ethics in engineering practice, and extreme events with applications in design.
This is the first semester of a two-semester sequence on Differential Analysis. …
This is the first semester of a two-semester sequence on Differential Analysis. Topics include fundamental solutions for elliptic; hyperbolic and parabolic differential operators; method of characteristics; review of Lebesgue integration; distributions; fourier transform; homogeneous distributions; asymptotic methods.
In this course, we study elliptic Partial Differential Equations (PDEs) with variable …
In this course, we study elliptic Partial Differential Equations (PDEs) with variable coefficients building up to the minimal surface equation. Then we study Fourier and harmonic analysis, emphasizing applications of Fourier analysis. We will see some applications in combinatorics / number theory, like the Gauss circle problem, but mostly focus on applications in PDE, like the Calderon-Zygmund inequality for the Laplacian, and the Strichartz inequality for the Schrodinger equation. In the last part of the course, we study solutions to the linear and the non-linear Schrodinger equation. All through the course, we work on the craft of proving estimates.
This course is an introduction to differential geometry. The course itself is …
This course is an introduction to differential geometry. The course itself is mathematically rigorous, but still emphasizes concrete aspects of geometry, centered on the notion of curvature.
Double affine Hecke algebras (DAHA), also called Cherednik algebras, and their representations …
Double affine Hecke algebras (DAHA), also called Cherednik algebras, and their representations appear in many contexts: integrable systems (Calogero-Moser and Ruijsenaars models), algebraic geometry (Hilbert schemes), orthogonal polynomials, Lie theory, quantum groups, etc. In this course we will review the basic theory of DAHA and their representations, emphasizing their connections with other subjects and open problems.
Seminar on a selected topic from Renaissance architecture. Requires original research and …
Seminar on a selected topic from Renaissance architecture. Requires original research and presentation of a report. The aim of this course is to highlight some technical aspects of the classical tradition in architecture that have so far received only sporadic attention. It is well known that quantification has always been an essential component of classical design: proportional systems in particular have been keenly investigated. But the actual technical tools whereby quantitative precision was conceived, represented, transmitted, and implemented in pre-modern architecture remain mostly unexplored. By showing that a dialectical relationship between architectural theory and data-processing technologies was as crucial in the past as it is today, this course hopes to promote a more historically aware understanding of the current computer-induced transformations in architectural design.
This class is a multidisciplinary introduction to pharmacology, neurotransmitters, drug mechanisms, and …
This class is a multidisciplinary introduction to pharmacology, neurotransmitters, drug mechanisms, and brain diseases from addiction to schizophrenia.
Earth science is the study of our home planet and all of …
Earth science is the study of our home planet and all of its components: its lands, waters, atmosphere, and interior. In this book, some chapters are devoted to the processes that shape the lands and impact people. Other chapters depict the processes of the atmosphere and its relationship to the planets surface and all our living creatures. For as long as people have been on the planet, humans have had to live within Earths boundaries. Now human life is having a profound effect on the planet. Several chapters are devoted to the effect people have on the planet. Chapters at the end of the book will explore the universe beyond Earth: planets and their satellites, stars, galaxies, and beyond.
This course covers the role of physics and physicists during the 20th …
This course covers the role of physics and physicists during the 20th century, focusing on Einstein, Oppenheimer, and Feynman. Beyond just covering the scientific developments, institutional, cultural, and political contexts will also be examined.
This course is an investigation of the Roman empire of Augustus, the …
This course is an investigation of the Roman empire of Augustus, the Frankish empire of Charlemagne, and the English empire in the age of the Hundred Years War. Students examine different types of evidence, read across a variety of disciplines, and develop skills to identify continuities and changes in ancient and medieval societies. Each term this course is different, looking at different materials from a variety of domains to explore ancient and mideveal studies. This version is a capture of the course as it was taught in 2012, and does not reflect how it is taught currently.
Navigate AI in education by looking at essential AI concepts, techniques, and …
Navigate AI in education by looking at essential AI concepts, techniques, and tools, highlighting practical applications. AI can support personalized learning, automate daily tasks, and provide insights for data-driven decision making.
This subject provides an introduction to fluid mechanics. Students are introduced to …
This subject provides an introduction to fluid mechanics. Students are introduced to and become familiar with all relevant physical properties and fundamental laws governing the behavior of fluids and learn how to solve a variety of problems of interest to civil and environmental engineers. While there is a chance to put skills from Calculus and Differential Equations to use in this subject, the emphasis is on physical understanding of why a fluid behaves the way it does. The aim is to make the students think as a fluid. In addition to relating a working knowledge of fluid mechanics, the subject prepares students for higher-level subjects in fluid dynamics.
Explore using Microsoft Copilot in education by learning basic concepts, modes, and …
Explore using Microsoft Copilot in education by learning basic concepts, modes, and features and then applying that knowledge to design effective prompts and analyze results.
This module shows educators how to help learners discover, interact, and create …
This module shows educators how to help learners discover, interact, and create with AI and generative AI. It also covers the responsible use of AI and explains the art of prompt engineering to help learners to explore the possibilities of AI.
This video aims to delve into the human problems brought out by …
This video aims to delve into the human problems brought out by issues in artificial intelligence, specifically with respect to bias. It is suitable for classroom use or as a standalone video for those who wish to understand the issue more deeply than is conventionally covered. For classroom use, we recommend watching the chapterized version of the video and working through the teaching materials provided for each chapter.
Everyone Can Code offers student and teacher guides to Swift Playgrounds. Flexible …
Everyone Can Code offers student and teacher guides to Swift Playgrounds. Flexible activities help students of all ages build on what they already know, experiment with new coding concepts, apply their understanding, and creatively communicate how coding impacts their lives.
This currculum builds upon the Exploring Computer Science Currculum develop by Joanna …
This currculum builds upon the Exploring Computer Science Currculum develop by Joanna Goode and Gail Chapman. The currculum has student develop coding skills as they work on problem sovling skills and helps them build computational thinking.
Exploring Computer Science is a yearlong course developed around a framework of …
Exploring Computer Science is a yearlong course developed around a framework of both computer science content and computational practice. Assignments and instruction are contextualized to be socially relevant and meaningful for diverse students. Units utilize a variety of tools/platforms and culminate with final projects around Human-Computer Interaction, Problem Solving, Web Design (HTML, CSS), Programming (Scratch, Edware), Computing & Data Analysis, and Robotics. ECS is recognized nationally as a preparatory course for AP Computer Science Principles. Watch this video and view this fact sheet for more information.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.