Updating search results...

Search Resources

514 Results

View
Selected filters:
  • Physics
Magnet and Compass
Unrestricted Use
CC BY
Rating
0.0 stars

Ever wonder how a compass worked to point you to the Arctic? Explore the interactions between a compass and bar magnet, and then add the earth and find the surprising answer! Vary the magnet's strength, and see how things change both inside and outside. Use the field meter to measure how the magnetic field changes.

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Archie Paulson
Carl Wieman
Chris Malley
Danielle Harlow
Kathy Perkins
Michael Dubson
Date Added:
01/23/2011
Magnetic Pendulums
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity and demonstration about electricity and magnetism, learners observe how the current generated when one copper coil swings through a magnetic field starts a second coil swinging. Learners also explore what happens when they change the polarity of the magnet, reverse the coil, or add a clip lead to short-circuit the coils. Use this activity to illustrate how electricity and magnetism interact. The assembly of the electromagnetic swing device takes about an hour.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
12/10/2020
Magnetic Suction
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity about electricity and magnetism, learners discover how a doorbell works. A coil of wire with current flowing through it forms an electromagnet that acts similar to a bar magnet. The coil will magnetize an iron nail and attract it in a remarkably vigorous way.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
12/10/2020
Magnets and Electromagnets
Unrestricted Use
CC BY
Rating
0.0 stars

Explore the interactions between a compass and bar magnet. Discover how you can use a battery and wire to make a magnet! Can you make it a stronger magnet? Can you make the magnetic field reverse?

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Archie Paulson
Carl Wieman
Chris Malley
Danielle Harlow
Kathy Perkins
Michael Dubson
Date Added:
12/02/2010
Making Electricity at a Coal-Burning Plant
Read the Fine Print
Educational Use
Rating
0.0 stars

This video from KET traces the energy transformations that occur when coal is burned to produce electricity. Some of the mechanical processes are also described.

Subject:
Career and Technical Education
Chemistry
Engineering
Physics
Science
Technology
Technology and Engineering Education
Material Type:
Lesson
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media Common Core Collection
Date Added:
08/19/2009
Making a Seismometer
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment adapted from ZOOM, cast members make a seismometer and experiment with different ways to make it register movement.

Subject:
Astronomy
Chemistry
Physics
Professional Learning
Science
Technology
Material Type:
Activity/Lab
Diagram/Illustration
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Date Added:
12/17/2005
Making in Small Town Libraries: Using the Blutrack in a Library
Rating
0.0 stars

BluTrack is a two lane, flexible racetrack. BluTrack is both fun and educational. Bring the racetrack to your library with the Blutrack racing system! See how to implement BluTrack activities in your library. This guide includes: A list of what you’ll need, tips for choosing a theme, ideas to run a library activity, and a DIY (“How To”) guide for the youth.

Subject:
Physics
Science
Material Type:
Lesson Plan
Provider:
Utah State University Institue of Museum and Library Services
Provider Set:
Making In Small Town Libraries
Date Added:
04/26/2019
Masses & Springs
Unrestricted Use
CC BY
Rating
0.0 stars

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Michael Dubson
The Mortenson Family Foundation
Wendy Adams
Date Added:
04/26/2006
Masses & Springs
Unrestricted Use
CC BY
Rating
0.0 stars

This simulation provides a realistic virtual mass-and-spring laboratory. Users can explore spring motion by manipulating stiffness of the spring and mass of the hanging weight. Concepts of Hooke's Law and elastic potential energy are further clarified through charts showing kinetic, potential, and thermal energy for each spring. This item is part of a larger collection of simulations developed by the Physics Education Technology project (PhET). The simulations are animated, interactive, and game-like environments in which students learn through exploration. All of the sims are freely available from the PhET website for incorporation into classes.

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Date Added:
07/29/2008
Masses & Springs (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Michael Dubson
Wendy Adams
Date Added:
08/02/2009
Mass vs. Weight: Introduction
Read the Fine Print
Educational Use
Rating
0.0 stars

Two astronauts aboard the International Space Station (ISS) describe mass and weight and the differences between the two in this video from NASA’s Teaching From Space initiative.

Subject:
Chemistry
Physics
Science
Material Type:
Lesson
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media Common Core Collection
Date Added:
10/27/2011
Measuring Distances in the Milky Way
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The main aim of this lesson is to show students that distances may be determined without a meter stick—a concept fundamental to such measurements in astronomy. It introduces students to the main concepts behind the first rung of what astronomers call the distance ladder. The four main learning objectives are the following: 1) Explore, in practice, a means of measuring distances without what we most often consider the “direct” means: a meter stick; 2) Understand the limits of a method through the exploration of uncertainties; 3) Understand in the particular method used, the relationship between baseline and the accuracy of the measurement; and 4) Understand the astronomical applications and implications of the method and its limits. Students should be able to use trigonometry and know the relation between trigonometric functions and the triangle. A knowledge of derivatives is also needed to obtain the expression for the uncertainty on the distance measured. Students will need cardboard cut into disks. The number of disks is essentially equal to half the students in the class. Two straight drink straws and one pin per disk. Students will also need a protractor. The lesson should not take more than 50 minutes to complete if the students have the mathematical ability mentioned above. This lesson is complimentary to the BLOSSOMS lesson, "The Parallax Activity." The two lessons could be used sequentially - this one being more advanced - or they could be used separately.

Subject:
Astronomy
Physics
Science
Material Type:
Lecture
Provider:
M.I.T.
Provider Set:
MIT Blossoms
Author:
The Pythagorean Theorem: Geometry’s Most Elegant Theorem
Date Added:
12/10/2020
Melissa Franklin: High Energy Physics
Read the Fine Print
Educational Use
Rating
0.0 stars

This video segment adapted from Discovering Women profiles Fermilab physicist and Harvard professor Melissa Franklin.

Subject:
Chemistry
Engineering
Physics
Science
Technology
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Date Added:
02/20/2004
The Michelson Interferometer
Read the Fine Print
Educational Use
Rating
0.0 stars

Learn about an important physics experiment that uses an invention that manipulates light in this interactive activity adapted from NASA.

Subject:
Chemistry
Engineering
History
Physics
Science
Material Type:
Interactive
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media Common Core Collection
Date Added:
12/02/2011
Microgravity
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video from DragonflyTV, Tiana and Sammy measure, record, and analyze the results of a drop box test to find out how everyday items behave in microgravity.

Subject:
Chemistry
Physics
Science
Material Type:
Lecture
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Date Added:
08/09/2007
Microwaves
Unrestricted Use
CC BY
Rating
0.0 stars

How do microwaves heat up your coffee? Adjust the frequency and amplitude of microwaves. Watch water molecules rotating and bouncing around. View the microwave field as a wave, a single line of vectors, or the entire field.

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Ron LeMaster
Wendy Adams
Date Added:
11/15/2007
Microwaves (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

How do microwaves heat up your coffee? Adjust the frequency and amplitude of microwaves. Watch water molecules rotating and bouncing around. View the microwave field as a wave, a single line of vectors, or the entire field.

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Ron LeMaster
Wendy Adams
Date Added:
07/01/2004
Mirrorly a Window
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity about light and reflection, learners discover that what you see is often affected by what you expect to see. Learners hold on to a device consisting of two mirrors glued back to back to each other with a dowel handle on either side. While looking at one side of the mirror, learners move one hand on the other side of the mirror. They will be surprised as their brain is fooled into thinking that the image it sees in the mirror is actually their other hand. Learners can participate in assembling the mirror device or use a pre-assembled one. This resource also includes a simpler version of this activity in the "etcetera" section at the bottom of the guide.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
12/10/2020