Ever wonder how a compass worked to point you to the Arctic? …
Ever wonder how a compass worked to point you to the Arctic? Explore the interactions between a compass and bar magnet, and then add the earth and find the surprising answer! Vary the magnet's strength, and see how things change both inside and outside. Use the field meter to measure how the magnetic field changes.
In this activity and demonstration about electricity and magnetism, learners observe how …
In this activity and demonstration about electricity and magnetism, learners observe how the current generated when one copper coil swings through a magnetic field starts a second coil swinging. Learners also explore what happens when they change the polarity of the magnet, reverse the coil, or add a clip lead to short-circuit the coils. Use this activity to illustrate how electricity and magnetism interact. The assembly of the electromagnetic swing device takes about an hour.
In this activity about electricity and magnetism, learners discover how a doorbell …
In this activity about electricity and magnetism, learners discover how a doorbell works. A coil of wire with current flowing through it forms an electromagnet that acts similar to a bar magnet. The coil will magnetize an iron nail and attract it in a remarkably vigorous way.
Explore the interactions between a compass and bar magnet. Discover how you …
Explore the interactions between a compass and bar magnet. Discover how you can use a battery and wire to make a magnet! Can you make it a stronger magnet? Can you make the magnetic field reverse?
This video from KET traces the energy transformations that occur when coal …
This video from KET traces the energy transformations that occur when coal is burned to produce electricity. Some of the mechanical processes are also described.
BluTrack is a two lane, flexible racetrack. BluTrack is both fun and …
BluTrack is a two lane, flexible racetrack. BluTrack is both fun and educational. Bring the racetrack to your library with the Blutrack racing system! See how to implement BluTrack activities in your library. This guide includes: A list of what you’ll need, tips for choosing a theme, ideas to run a library activity, and a DIY (“How To”) guide for the youth.
A realistic mass and spring laboratory. Hang masses from springs and adjust …
A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.
This simulation provides a realistic virtual mass-and-spring laboratory. Users can explore spring …
This simulation provides a realistic virtual mass-and-spring laboratory. Users can explore spring motion by manipulating stiffness of the spring and mass of the hanging weight. Concepts of Hooke's Law and elastic potential energy are further clarified through charts showing kinetic, potential, and thermal energy for each spring. This item is part of a larger collection of simulations developed by the Physics Education Technology project (PhET). The simulations are animated, interactive, and game-like environments in which students learn through exploration. All of the sims are freely available from the PhET website for incorporation into classes.
A realistic mass and spring laboratory. Hang masses from springs and adjust …
A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.
Two astronauts aboard the International Space Station (ISS) describe mass and weight …
Two astronauts aboard the International Space Station (ISS) describe mass and weight and the differences between the two in this video from NASA’s Teaching From Space initiative.
The main aim of this lesson is to show students that distances …
The main aim of this lesson is to show students that distances may be determined without a meter stick—a concept fundamental to such measurements in astronomy. It introduces students to the main concepts behind the first rung of what astronomers call the distance ladder. The four main learning objectives are the following: 1) Explore, in practice, a means of measuring distances without what we most often consider the “direct” means: a meter stick; 2) Understand the limits of a method through the exploration of uncertainties; 3) Understand in the particular method used, the relationship between baseline and the accuracy of the measurement; and 4) Understand the astronomical applications and implications of the method and its limits. Students should be able to use trigonometry and know the relation between trigonometric functions and the triangle. A knowledge of derivatives is also needed to obtain the expression for the uncertainty on the distance measured. Students will need cardboard cut into disks. The number of disks is essentially equal to half the students in the class. Two straight drink straws and one pin per disk. Students will also need a protractor. The lesson should not take more than 50 minutes to complete if the students have the mathematical ability mentioned above. This lesson is complimentary to the BLOSSOMS lesson, "The Parallax Activity." The two lessons could be used sequentially - this one being more advanced - or they could be used separately.
In this video from DragonflyTV, Tiana and Sammy measure, record, and analyze …
In this video from DragonflyTV, Tiana and Sammy measure, record, and analyze the results of a drop box test to find out how everyday items behave in microgravity.
How do microwaves heat up your coffee? Adjust the frequency and amplitude …
How do microwaves heat up your coffee? Adjust the frequency and amplitude of microwaves. Watch water molecules rotating and bouncing around. View the microwave field as a wave, a single line of vectors, or the entire field.
How do microwaves heat up your coffee? Adjust the frequency and amplitude …
How do microwaves heat up your coffee? Adjust the frequency and amplitude of microwaves. Watch water molecules rotating and bouncing around. View the microwave field as a wave, a single line of vectors, or the entire field.
In this activity about light and reflection, learners discover that what you …
In this activity about light and reflection, learners discover that what you see is often affected by what you expect to see. Learners hold on to a device consisting of two mirrors glued back to back to each other with a dowel handle on either side. While looking at one side of the mirror, learners move one hand on the other side of the mirror. They will be surprised as their brain is fooled into thinking that the image it sees in the mirror is actually their other hand. Learners can participate in assembling the mirror device or use a pre-assembled one. This resource also includes a simpler version of this activity in the "etcetera" section at the bottom of the guide.
Using the mission to land a human on the Martian surface as …
Using the mission to land a human on the Martian surface as context, students will use knowledge about energy and molecular motion to build and test a simplified heat shield.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.