Search Resources

26 Results

View
Selected filters:
  • Simulation
52 Minute Challenge
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Students get one class period (52 minutes) to find a real problem on campus, document it, develop a solution and prepare a market-based presentation to be peer-reviewed the next day. The main goal of this project is to highlight the importance of collaboration when working under a tight deadline - a common situation in today's working world.

This project integrates engineering, design and business concepts and meets learning standards from 9th to 12th grade.

Subject:
Business and Economics
Career and Technical Education
Science
Material Type:
Assessment
Interactive
Lecture
Lesson Plan
Simulation
Teaching/Learning Strategy
Provider:
Allen Distinguished Educators
Date Added:
11/04/2015
Arithmetic (AR)
Read the Fine Print
Some Rights Reserved
Rating

Remember your multiplication tables? ... me neither. Brush up on your multiplication, division, and factoring skills with this exciting game. No calculators allowed!

Subject:
Mathematics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Trish Loeblein
Date Added:
05/02/2010
Bug Hunt
Read the Fine Print
Rating

“Bug Hunt” uses NetLogo software and simulates an insect population that is preyed on by birds. There are six speeds of bugs from slow to fast and the bird tries to catch as many insects as possible in a certain amount of time. Students are able to see the results graphed as the average insect speed over time, the current bug population and the number of insects caught. There are two variations to try for the predator, one where the predator pursues the prey and one where the predator stays still and captures insects that pass nearby. In the first case the “bird” catches the slow insects and the faster ones survive, reproduce and pass genes on. The average speed of bug should increase over time. In the second case the faster bugs come near to the bird more often than the slow ones. The slow ones survive more, reproduce and pass their genes on.

Subject:
Biology
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Author:
Wilensky, Uri
Date Added:
12/10/2020
Can I get a drink.. of water?
Conditional Remix & Share Permitted
CC BY-NC
Rating

Water is a limited resource that we use over and over again. The idea is to teach the science behind the water cycle, where water comes from and is located on the Earth. After research and developing and understanding of conservation students will create a water tower that will collect and store rainwater. Students will also create a Public Service Announcement (PSA) on water conservation.

Subject:
Science
Material Type:
Activity/Lab
Assessment
Interactive
Lesson Plan
Simulation
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Date Added:
05/15/2016
Curriki Geometry
Conditional Remix & Share Permitted
CC BY-NC
Rating

Comprised of six projects, Curriki Geometry was designed to meet the needs of students born in a global, interactive, digitally-connected world through the use of real-world examples, engaging projects, interactive technologies, videos, and directed student feedback.

Subject:
Mathematics
Material Type:
Activity/Lab
Full Course
Interactive
Lesson Plan
Simulation
Student Guide
Unit of Study
Provider:
Curriki
Date Added:
07/05/2018
DNA to Protein
Read the Fine Print
Rating

This online interactive module of 10 pages or frames integrates textual information, 3D molecular models, interactive molecular simulations, and embedded assessment items to guide students in understanding the copying of DNA base sequences from translation to transcription into proteins within each cell. The module divides the exercises in to Day 1 and Day 2 time frames. Teachers can view student assessment responses by assigning the module within a class created within the Molecular Workbench application. This Java-based module must be downloaded to each computer.

Subject:
Biology
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
12/10/2020
Flooding, Oh My!
Conditional Remix & Share Permitted
CC BY-NC
Rating

This is a 21 day unit on the topic of floods. Students will plan and prepare for what might happen in the event of a flood in our area. We have had floods in the past that have affected the Walterville School, its campus, and the surrounding areas. Using this as a springboard, students will discuss the effects of flooding, do research and interview family members who have experienced flooding, and then discuss possible ways to prevent significant damage on the buildings and surrounding areas. They will then design a barrier that could protect an area from damage for a period of time. Students will need materials to conduct experiments. We have listed these in the lesson plan. We have also included a trip to the Leaburg Dam so that students can learn about dams and their uses. We plan on teaching this unit in the fall.

Subject:
Science
Material Type:
Assessment
Data Set
Lecture
Lesson Plan
Simulation
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Date Added:
12/10/2020
Human Homeostasis
Read the Fine Print
Rating

This interactive simulation of human homeostasis provides students the opportunity to explore how our body maintains a stable internal environment in spite of of the outside conditions, within certain limits. This simulation allows students to investigate a phenomenon that may in real life, be dangerous to humans. Students are asked to regulate the internal body temperature of an individual using clothing, exercise, and perspiration. A four- page exploration sheet guides students through the simulation, including a short prior knowledge piece providing information on how to use the simulation and introductory questions. Two separate activities are included: one that helps students understand the how each external factor affects initial body temperature and another that allows students to explore effects on body temperature after one hour. In the second portion of the interactive simulation students try to maintain a stable body temperature when the factors are changed. Students choose the factors of exercise level, sweat level, body position, clothing, and nutrients in terms of both water and food to maintain homeostasis. The simulation generates data tables and graphing during specific time intervals of outside temperature and body temperature. Students may also alter the outside temperature as part of the simulation. Students adjust the exercise level, amount of clothing, and sweating levels. Water level, sugar level, and fatigue level are influenced by the students’ choices and are illustrated by bar graphs and line graphs. This simulation can provide an introduction to a lesson or unit that explores how body systems interact. This simulation provides a good foundation for continued study of how the body systems interact and would be an excellent starting point for a lesson or unit on this concept. This interactive simulation provides students with a strong introduction to how body systems interact as the simulation illustrates how to maintain body temperature, sugar level and fatigue level and students are made aware of the consequences of not maintaining those levels. The importance of water and food are also emphasized. Students can rerun the simulation making different choices to determine the effects on homeostasis. Student exploration sheets provide guides for different runs with students setting their own parameters for the runs and drawing conclusions from the resulting changes. Teachers can view student assessment responses by assigning the simulation to a class created within the ExploreLearning site. Access to the teachers guide is provided with the free 30 day access and is helpful and complete. Vocabulary of dehydration, heat stroke, homeostasis, hypothermia, and involuntary, voluntary and thermoregulation are explained in detail in the accompanying teacher’s vocabulary guide.

Subject:
Biology
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
12/10/2020
Leaf Photosynthesis NetLogo Model
Read the Fine Print
Rating

This Java-based NetLogo model allows students to investigate the chemical and energy inputs and outputs of photosynthesis through an interactive simulation. The simulation is a visual, conceptual model of photosynthesis and does not generate quantitative data. The central concept in the model is the role of chlorophyll in capturing light energy, and this concept is presented without delving into the biochemical details of the photosynthetic reactions. This allows students to focus on the core idea that photosynthesis transforms light energy into chemical energy. Along with exploring the basic process of photosynthesis, students can investigate the effects of light intensity, the day-night cycle (assuming the most common C3 photosynthetic pathway), CO2 concentration, and water availability on the rate of sugar production during photosynthesis. The model highlights the cycling within the chloroplasts between excited and unexcited states as energy is captured and released by chlorophyll. The lesson is written as an introductory learning experience, beginning with the question: What is needed for photosynthesis in a leaf, and what is produced? This resource is best suited as one in a series of learning experiences that either reinforce or extend the concepts addressed here. The model is embedded within an electronic form that provides instructions and guiding questions. Teachers and students should note that the electronic form does not save user data. An important limitation is that the model relies heavily on students’ visual perception, and this may pose a barrier for some students.

Subject:
Biology
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
12/10/2020
Masses & Springs
Unrestricted Use
CC BY
Rating

This simulation provides a realistic virtual mass-and-spring laboratory. Users can explore spring motion by manipulating stiffness of the spring and mass of the hanging weight. Concepts of Hooke's Law and elastic potential energy are further clarified through charts showing kinetic, potential, and thermal energy for each spring. This item is part of a larger collection of simulations developed by the Physics Education Technology project (PhET). The simulations are animated, interactive, and game-like environments in which students learn through exploration. All of the sims are freely available from the PhET website for incorporation into classes.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Date Added:
07/29/2008
An Origin of Species: Pollenpeepers
Read the Fine Print
Rating

This web simulation allows students to explore adaptive radiation of a fictitious group of birds called Pollenpeepers over a period of 5 million years. A hurricane blows some birds to 3 very different island groups and students identify the changes that take place over time and their causes including different climates, food, competition and predators. Each of the three island groups are compared to the original habitat with respect to topography, temperature, growing season and type of vegetation. Students read about the competition that the birds face when they arrive five million years ago, look at the amount of seeds, insects and flowers present and whether the number of predators is high, medium or low. They can then go forward in time a million years at a time and see the changes that have taken place in the population of pollenpeepers in each of these time periods. Instructions to operate the simulation are included as well as a species gallery where students can explore adaptive radiation in lemurs, Galapagos finches, Hawaiian silverswords, tenrecs and Hawaiian fruit flies.

Subject:
Biology
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
12/10/2020
Parabolas: It's All Done with Mirrors
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

In this activity about light and reflection, learners use a special device called a Mirage Maker䋢 to create an illusion. What they perceive as an object is really an image in space, created by two concave mirrors. Learners will be surprised when they try to grab the object on the mirror and there's nothing there! Activity includes a light-ray diagram to help explain how the image is created.

Subject:
Science
Material Type:
Activity/Lab
Simulation
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
02/25/2013
Pie-Pan Convection
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

In this activity, students observe fluid motion and the formation of convection cells as a solution of soap and water is heated. This procedure can be performed as a demonstration by the teacher, or older students can conduct the experiment themselves. A list of materials, instructions, and a description of the convective process are included.

Subject:
Astronomy
Chemistry
Physics
Material Type:
Interactive
Lecture Notes
Simulation
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
03/10/2005
Population Explosion
Read the Fine Print
Rating

Population Explosion is a computer simulation which allows students to manipulate factors to see what happens over time to a population of sheep within an enclosed field. As the simulation runs, a graph shows the dynamic relationship between the sheep population size and their primary food resource, grass. Students can control factors such as initial number of sheep, grass regrowth rate, gain from food, and birthrate. Predation is represented by a “reaper” button which may also be controlled. The speed of the simulation can be set so that students can see more clearly what happens over time, or collect data more quickly, depending on how fast the simulation runs. Directions and a suggested simulation sequence are provided along with prompts so that students can pause and consider their results. A space within the simulation is provided for students to record observations and answers to the prompts. For each step in this suggested sequence, students take a snapshot of graphs they have created and store them in an album. At the end of the activity analysis questions help students connect the activity to wild populations. An optional extension exercise is also suggested.

Subject:
Biology
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
12/10/2020
Seismic Sensations
Conditional Remix & Share Permitted
CC BY-NC
Rating

Our school, Kelly Middle School, is one of the oldest middle school buildings in 4J (primary construction was completed in 1945). Each year we practice earthquake drills. Why? Why should we be concerned about earthquakes? Where might an earthquake occur in the northwest area? Might it be minor or violent? How might this be measured? Is an earthquake a singular event, or a series of events? What increases or decreases an earthquake hazard? Do we have any early-warning systems? Is the school earthquake drill correct? Considering these questions students need to develop an understanding of how to prepare for, and react to an earthquake event. When students are comfortably informed, who should they report to?

Subject:
Mathematics
Science
Material Type:
Activity/Lab
Lesson Plan
Reading
Simulation
Teaching/Learning Strategy
Unit of Study
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Date Added:
12/10/2020