When will objects float and when will they sink? Learn how buoyancy …
When will objects float and when will they sink? Learn how buoyancy works with blocks. Arrows show the applied forces, and you can modify the properties of the blocks and the fluid.
When will objects float and when will they sink? Learn how buoyancy …
When will objects float and when will they sink? Learn how buoyancy works with blocks. Arrows show the applied forces, and you can modify the properties of the blocks and the fluid.
This article describes some common misconceptions that elementary students may have about …
This article describes some common misconceptions that elementary students may have about icebergs and glaciers (including density and buoyancy). It also includes suggestions for formative assessment and teaching for conceptual change.
Why do objects like wood float in water? Does it depend on …
Why do objects like wood float in water? Does it depend on size? Create a custom object to explore the effects of mass and volume on density. Can you discover the relationship? Use the scale to measure the mass of an object, then hold the object under water to measure its volume. Can you identify all the mystery objects?
Why do objects like wood float in water? Does it depend on …
Why do objects like wood float in water? Does it depend on size? Create a custom object to explore the effects of mass and volume on density. Can you discover the relationship? Use the scale to measure the mass of an object, then hold the object under water to measure its volume. Can you identify all the mystery objects?
Density and Composition of Pennies Lab Interactive Google Document, in which students …
Density and Composition of Pennies Lab
Interactive Google Document, in which students easily make graphs and manipulate images by dragging and dropping points. Students make their own copy of the google doc in their student drive, edit it, and share/submit to teacher.
In episode seven of the Beyond Penguins and Polar Bears podcast series, …
In episode seven of the Beyond Penguins and Polar Bears podcast series, learn how scientists can get a first-hand look at changing polar icebergs and glaciers and what these changes can teach us about density.
Explore pressure in the atmosphere and underwater. Reshape a pipe to see …
Explore pressure in the atmosphere and underwater. Reshape a pipe to see how it changes fluid flow speed. Experiment with a leaky water tower to see how the height and water level determine the water trajectory.
In this video segment adapted from FETCH!, contestants are challenged to use …
In this video segment adapted from FETCH!, contestants are challenged to use materials from a garbage dump to build a boat that floats, can be steered, and is propelled by something other than oars.
The purpose of this task is for students to apply the concepts …
The purpose of this task is for students to apply the concepts of mass, volume, and density in a real-world context. There are several ways one might approach the problem, e.g., by estimating the volume of a person and dividing by the volume of a cell.
This issue of the free online magazine, Beyond Penguins and Polar Bears, …
This issue of the free online magazine, Beyond Penguins and Polar Bears, contains content knowledge and instructional resources about icebergs and glaciers and the scientific principles of density and buoyancy.
This bilingual curriculum and resources guide and is designed to help elementary …
This bilingual curriculum and resources guide and is designed to help elementary school teachers organize instruction to increase achievement of Hispanic primary-grade children whose first language is not English. The guide offers a curriculum plan, instructional strategies and activities, suggested teacher and student materials, and assessment procedures. Because language development is a fundamental co-requisite for learning mathematics and science concepts, processes and skills, the lessons in many instances begin with literature (e.g., stories, books) and discussion activities that set the stage for posing questions and presenting conflicting situations related to the Big Ideas in mathematics and science that are the focus of the lesson.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.