This is a lab activity involving transformations between the gravitational potential energy, …
This is a lab activity involving transformations between the gravitational potential energy, elastic potential energy, and kinetic energy of a system. An air track with a glider and a photo gate timer are needed to perform the lab. The lab is divided into three separate but related parts. The first part involves using a spring to launch the glider horizontally, measuring the velocity of the glider, and then relating elastic potential energy to kinetic energy. The second activity involves adjusting the air track so that when the glider is launched, it goes up an incline. This set up allows students to relate elastic potential energy to gravitational potential energy. The third and final activity ties elastic potential, gravitational, and kinetic energy together. Using the knowledge they acquired from the first two activities, the students need to use Conservation of Energy to predict the velocity of the glider as it is launched up the incline and then compare their prediction to the experimental value.
This learning video explores the mysterious physics behind boomerangs and other rapidly …
This learning video explores the mysterious physics behind boomerangs and other rapidly spinning objects. Students will get to make and throw their own boomerangs between video segments! A key idea presented is how torque causes the precession of angular momentum. One class period is required to complete this learning video, and the optimal prerequisites are a familiarity with forces, Newton's laws, vectors and time derivatives. Each student would need the following materials for boomerang construction: cardboard (roughly the size of a postcard), ruler, pencil/pen, scissors, protractor, and a stapler.
This video lesson explores Newton's Third Law of Motion through examination of …
This video lesson explores Newton's Third Law of Motion through examination of several real world examples of this law in action, including that of a donkey cart - a site common in the streets of Pakistan. Students will understand that forces act on objects even if the objects appear to be static and that certain conditions - gravity in particular - affect how two objects interact. The time needed to complete this lesson is approximately 50-60 minutes, and students should be familiar with basic mechanics such as Newton's laws, levers, etc. The materials required are a couple of spring balances, a meter rule, tape, pencil, two desks, and some lab weights (few grams each). The types of in-class activities for between the video breaks include active discussions and participation by students in activities related to the Third Law.
The objective of this lesson is to illustrate how a common everyday …
The objective of this lesson is to illustrate how a common everyday experience (such as playing pool) can often provide a learning moment. In the example chosen, we use the game of pool to help explain some key concepts of physics. One of these concepts is the conservation of linear momentum since conservation laws play an extremely important role in many aspects of physics. The idea that a certain property of a system is maintained before and after something happens is quite central to many principles in physics and in the pool example, we concentrate on the conservation of linear momentum. The latter half of the video looks at angular momentum and friction, examining why certain objects roll, as opposed to slide. We do this by looking at how striking a ball with a cue stick at different locations produces different effects.
SP.255 is a lecture, discussion, and project based seminar about the physics …
SP.255 is a lecture, discussion, and project based seminar about the physics of rock climbing. Participants are first exposed to the unsolved problems in the climbing community that could be answered by research and then asked to solve a small part of one of these problems. The seminar provides an introduction to engineering problems, an opportunity to practice communication skills, and a brief stab at doing some research. This seminar explicitly does not include climbing instruction nor is climbing/mountaineering experience a prerequisite.
Watch the rubber bands vibrate on homemade guitars in this video segment …
Watch the rubber bands vibrate on homemade guitars in this video segment adapted from ZOOM as cast members talk about pitch and demonstrate how to make a cereal box instrument.
Explore how plates move on the surface of the earth. Change temperature, …
Explore how plates move on the surface of the earth. Change temperature, composition, and thickness of plates. Discover how to create new mountains, volcanoes, or oceans!
This video segment adapted from NOVA uses animation to show the relationship …
This video segment adapted from NOVA uses animation to show the relationship between the movement of a tectonic plate and whether volcanoes on the Hawaiian Islands are active or dormant.
The students will play a classic game from a popular show. Through …
The students will play a classic game from a popular show. Through this they will see the probabilty that the ball will land each of the numbers with more accurate results coming from repeated testing.
In this NRICH article the authors discuss the definition of problem solving …
In this NRICH article the authors discuss the definition of problem solving and the three ways the topic can be considered in the classroom: teaching for problem solving, teaching about problem solving and teaching through problem solving. Using examples from the NRICH site, the authors elaborates on each of the three ways that teachers can think about problem solving. The article can be printed in rich text format.
In this video segment from Cyberchase, the CyberSquad breaks down an action …
In this video segment from Cyberchase, the CyberSquad breaks down an action into a series of steps in order to program a robot to do what they need it to do.
Blast a Buick out of a cannon! Learn about projectile motion by …
Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance. Make a game out of this simulation by trying to hit a target.
Students will investigate the interactions between colliding objects using pushes and pulls. …
Students will investigate the interactions between colliding objects using pushes and pulls. After listening to the book, Push and Pull by Charlotte Guillian, students will play a game of kickball and observe how the ball is pushed, pulled, started, stopped, collided with other objects and how it changed position and speed. As a group, students will then brainstorm about other objects being pushed, pulled or colliding and choose one of those objects to investigate. This lesson is part of a bigger unit based on this Performance Expectation and items not addressed in this lesson are addressed in other lessons.
This activity gives students a chance to visualize a two-dimensional net of …
This activity gives students a chance to visualize a two-dimensional net of a three-dimensional object. Students are shown three views of a decorated cube and a net of six plain squares. They must decorate the net so that it folds to a cube consistent with the views. An interactive applet is provided. Ideas for implementation, extension and support are included along with three printable sheets (pdf).
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.