In this activity about light and perception, learners discover how a flash …
In this activity about light and perception, learners discover how a flash of light can create a lingering image called an "afterimage" on the retina of the eye. Learners will be surprised when they continue to see an image of a bright object after staring at it and looking away. Use this activity to introduce learners to principles of optics and perception as well as to explain why the full moon often appears larger when it is on the horizon than when it is overhead. This lesson guide also includes a few extensions like how to take "afterimage photographs."
All biological cells require the transport of materials across the plasma membrane …
All biological cells require the transport of materials across the plasma membrane into and out of the cell. By infusing cubes of agar with a pH indicator, and then soaking the treated cubes in vinegar, you can model how diffusion occurs in cells. Then, by observing cubes of different sizes, you can discover why larger cells might need extra help to transport materials.
Short pieces of chenille stem arranged inside a box look like a …
Short pieces of chenille stem arranged inside a box look like a random jumble of line segments—until viewed in the proper perspective.
Note: This activity is detail oriented and time intensive. It’s done by threading a long length of fishing line through twenty small holes, and then attaching short pieces of chenille stem to create a suspended pattern. When you look through a viewing hole, that random-looking pattern resolves into the form of a chair. If you think being a watchmaker is something you’d hate, then you might want to rethink doing this Snack!
In this demonstration, amaze learners by performing simple tricks using mirrors. These …
In this demonstration, amaze learners by performing simple tricks using mirrors. These tricks take advantage of how a mirror can reflect your right side so it appears to be your left side. To make the effect more dramatic, cover the mirror with a cloth, climb onto the table, straddle the mirror, and then drop the cloth as you appear to "take off." This resource contains information about how this trick was applied during the making of the movie "Star Wars."
In this simple exploration, a coiled phone cord slows the motion of …
In this simple exploration, a coiled phone cord slows the motion of a wave so you can see how a single pulse travels and what happens when two traveling wave pulses meet in the middle.
Step outside and discover the diversity of insect life in your neighborhood. …
Step outside and discover the diversity of insect life in your neighborhood. Insects are the world’s most diverse group of living things, with over 950,000 identified species and counting. You might think that you’d need to travel to the Amazon to study insects, but they can be found practically everywhere—including right where you happen to be.
This webpage from Exploratorium provides an activity that demonstrates the Bernoulli principle …
This webpage from Exploratorium provides an activity that demonstrates the Bernoulli principle with readily available materials. In this activity a table tennis ball is levitated in a stream of air from a vacuum cleaner. The site provides an explanation of what happens, asks questions about the activity, and also describes applications to flight. This activity is part of Exploratorium's Science Snacks series.
In this quick and simple activity, learners explore how the distribution of …
In this quick and simple activity, learners explore how the distribution of the mass of an object determines the position of its center of gravity, its angular momentum, and your ability to balance it. Learners discover it is easier to balance a wooden dowel on the tip of their fingers when a lump of clay is near the top of the stick. Use this activity to introduce learners to rotational inertia.
In this optics activity, learners discover that when they rotate a special …
In this optics activity, learners discover that when they rotate a special black and white pattern called a Benham's Disk, it produces the illusion of colored rings. Learners experiment with the speed of rotation and direction of rotation to observe varying patterns. Use this activity to explain to learners how our eyes detect color and how different color receptors in the eye respond at different rates.
Demonstrate the Bernoulli Principle using simple materials on a small or large …
Demonstrate the Bernoulli Principle using simple materials on a small or large scale. This resource includes two activities that allow learners to experience the Bernoulli Principle, in which an object is suspended in air by blowing down on it. Use this activity to explain how atomizers work and why windows are sometimes sucked out of their frames as two trains rush past each other.
In this activity, a spinning bicycle wheel resists efforts to tilt it …
In this activity, a spinning bicycle wheel resists efforts to tilt it and point the axle in a new direction. Learners use the bicycle wheel like a giant gyroscope to explore angular momentum and torque. Learners can participate in the assembly of the Bicycle Wheel Gyro or use a preassembled unit to explore these concepts and go for an unexpected spin!
Stare at one color—but see another. You see color when receptor cells …
Stare at one color—but see another. You see color when receptor cells (called cones) in your eye’s retina are stimulated by light. There are three types of cones, and each is sensitive to a particular color range. If one or more of the three types of cones adapts to a stimulus because of long exposure, it responds less strongly than it normally would.
The eye’s retina receives and reacts to incoming light and sends signals …
The eye’s retina receives and reacts to incoming light and sends signals to the brain, allowing you to see. One part of the retina, however, doesn't give you visual information—this is your eye’s “blind spot.”
This activity provides instructions for using a flashlight and aquarium (or other …
This activity provides instructions for using a flashlight and aquarium (or other container of water) to explain why the sky is blue and sunsets are red. When the white light from the sun shines through the earth's atmosphere, it collides with gas molecules with the blue light scattering more than the other colors, leaving a dominant yellow-orange hue to the transmitted light. The scattered light makes the sky blue; the transmitted light makes the sunset reddish orange. The section entitled What's Going On? explains this phenomena.
In this optics activity, learners examine how polarized light can reveal stress …
In this optics activity, learners examine how polarized light can reveal stress patterns in clear plastic. Learners place a fork between two pieces of polarizing material and induce stress by squeezing the tines together. Learners will observe the colored stress pattern in the image of the plastic that is projected onto a screen using an overhead projector. Learners rotate one of the polarizing filters to explore which orientations give the most dramatic color effects. This activity can be related to bones, as bones develop stress patterns from the loads imposed upon them every day.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.