Look inside a battery to see how it works. Select the battery …
Look inside a battery to see how it works. Select the battery voltage and little stick figures move charges from one end of the battery to the other. A voltmeter tells you the resulting battery voltage.
This video segment describes how the Australopithecus afarensis skeleton known as Lucy …
This video segment describes how the Australopithecus afarensis skeleton known as Lucy could have been fossilized. Footage courtesy of NOVA: "In Search of Human Origins."
Science Phenomena: HS Physical Science - Forces and Interactions - Special caution …
Science Phenomena: HS Physical Science - Forces and Interactions - Special caution should be taken when sitting down or getting up from a bed of nails. In this video, Steve Spangler used a motor to lift the entire bed of nails up and down safely. Each of the nails is pushing on the participant but since there are so many nails the force is distributed safely between all of the nails. This demonstration could be used in any physics unit discussing forces and pressure.
Explore bending of light between two media with different indices of refraction. …
Explore bending of light between two media with different indices of refraction. See how changing from air to water to glass changes the bending angle. Play with prisms of different shapes and make rainbows.
In this optics activity, learners discover that when they rotate a special …
In this optics activity, learners discover that when they rotate a special black and white pattern called a Benham's Disk, it produces the illusion of colored rings. Learners experiment with the speed of rotation and direction of rotation to observe varying patterns. Use this activity to explain to learners how our eyes detect color and how different color receptors in the eye respond at different rates.
Demonstrate the Bernoulli Principle using simple materials on a small or large …
Demonstrate the Bernoulli Principle using simple materials on a small or large scale. This resource includes two activities that allow learners to experience the Bernoulli Principle, in which an object is suspended in air by blowing down on it. Use this activity to explain how atomizers work and why windows are sometimes sucked out of their frames as two trains rush past each other.
In this activity, a spinning bicycle wheel resists efforts to tilt it …
In this activity, a spinning bicycle wheel resists efforts to tilt it and point the axle in a new direction. Learners use the bicycle wheel like a giant gyroscope to explore angular momentum and torque. Learners can participate in the assembly of the Bicycle Wheel Gyro or use a preassembled unit to explore these concepts and go for an unexpected spin!
How does the blackbody spectrum of the sun compare to visible light? …
How does the blackbody spectrum of the sun compare to visible light? Learn about the blackbody spectrum of Sirius A, the sun, a light bulb, and the earth. Adjust the temperature to see the wavelength and intensity of the spectrum change. View the color of the peak of the spectral curve. (Phys 3.3)
In this video adapted from NASA, two members of a NASA research …
In this video adapted from NASA, two members of a NASA research team working to produce carbon nanotubes share some background behind this new technology, show examples of how it will be useful, and explain the various tests being performed to ensure readiness for spaceflight.
This activity provides instructions for using a flashlight and aquarium (or other …
This activity provides instructions for using a flashlight and aquarium (or other container of water) to explain why the sky is blue and sunsets are red. When the white light from the sun shines through the earth's atmosphere, it collides with gas molecules with the blue light scattering more than the other colors, leaving a dominant yellow-orange hue to the transmitted light. The scattered light makes the sky blue; the transmitted light makes the sunset reddish orange. The section entitled What's Going On? explains this phenomena.
In this optics activity, learners examine how polarized light can reveal stress …
In this optics activity, learners examine how polarized light can reveal stress patterns in clear plastic. Learners place a fork between two pieces of polarizing material and induce stress by squeezing the tines together. Learners will observe the colored stress pattern in the image of the plastic that is projected onto a screen using an overhead projector. Learners rotate one of the polarizing filters to explore which orientations give the most dramatic color effects. This activity can be related to bones, as bones develop stress patterns from the loads imposed upon them every day.
This video segment, adapted from NOVA scienceNOW, presents basic concepts of physics …
This video segment, adapted from NOVA scienceNOW, presents basic concepts of physics behind booming sand dunes. See how surface tension affects potential and kinetic energy and how it all works together to create sound.
Here’s a new “spin” on an old toy. In this modern adaptation …
Here’s a new “spin” on an old toy. In this modern adaptation of a classic toy—the spool racer—a plastic water bottle is propelled by energy stored in a wound-up rubber band.
Watch water boil at room temperature. The temperature at which water boils …
Watch water boil at room temperature. The temperature at which water boils depends on pressure. You can demonstrate this by dramatically lowering the pressure on a water-filled plastic syringe at room temperature.
In this video Paul Andersen will first define momentum as the product …
In this video Paul Andersen will first define momentum as the product of an objects mass and velocity. He will then demonstrate how a net force acting on an object will change the momentum in the direction of the force. Several problems will be included.
In this demonstration of chemical change, the presenter blows breath into a …
In this demonstration of chemical change, the presenter blows breath into a methylene blue solution releasing carbon dioxide which acidifies the water and changes it from a bright blue color to green.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.