Updating search results...

Search Resources

75 Results

View
Selected filters:
Energy Skate Park
Restricted Use
Copyright Restricted
Rating
0.0 stars

Learn about the conservation of energy at the skate park! Build tracks, ramps, and jumps for the skater. View the skater's kinetic energy, potential energy, and thermal energy as they move along the track. Measure the speed and adjust the friction, gravity, and mass.

Subject:
Physics
Science
Material Type:
Interactive
Provider:
PhET Interactive Simulations University of Colorado Boulder
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Michael
Michael Dubson
Sam Reid
Trish Loeblein
Wendy Adams
Date Added:
10/03/2006
Energy Skate Park (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Michael Dubson
Patricia Loblein
Sam Reid
Wendy Adams
Date Added:
07/02/2008
Friction (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Learn how friction causes a material to heat up and melt. Rub two objects together and they heat up. When one reaches the melting temperature, particles break free as the material melts away. Arabic Language.

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Michael Dubson
Mindy Gratny
Wendy Adams
Date Added:
06/02/2008
The Greenhouse Effect
Unrestricted Use
CC BY
Rating
0.0 stars

How do greenhouse gases affect the climate? Explore the atmosphere during the ice age and today. What happens when you add clouds? Change the greenhouse gas concentration and see how the temperature changes. Then compare to the effect of glass panes. Zoom in and see how light interacts with molecules. Do all atmospheric gases contribute to the greenhouse effect?

Subject:
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
John Blanco
Kathy Perkins
Kelly Lancaster
Robert Parson
Ron LeMaster
Trish Loeblein
Wendy Adams
Date Added:
11/15/2007
John Travoltage
Unrestricted Use
CC BY
Rating
0.0 stars

Make sparks fly with John Travoltage. Wiggle Johnnie's foot and he picks up charges from the carpet. Bring his hand close to the door knob and get rid of the excess charge.

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Sam Reid
Wendy Adams
Date Added:
06/01/2004
Ladybug Motion 2D
Unrestricted Use
CC BY
Rating
0.0 stars

Learn about position, velocity and acceleration vectors. Move the ladybug by setting the position, velocity or acceleration, and see how the vectors change. Choose linear, circular or elliptical motion, and record and playback the motion to analyze the behavior.

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Noah Podolefsky
Sam Reid
Trish Loeblein
Wendy Adams
Date Added:
04/01/2009
Ladybug Revolution
Unrestricted Use
CC BY
Rating
0.0 stars

Join the ladybug in an exploration of rotational motion. Rotate the merry-go-round to change its angle, or choose a constant angular velocity or angular acceleration. Explore how circular motion relates to the bug's x,y position, velocity, and acceleration using vectors or graphs.

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Mindy Gratny
Sam Reid
Wendy Adams
Date Added:
10/28/2008
Ladybug Revolution (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Join the ladybug in an exploration of rotational motion. Rotate the merry-go-round to change its angle, or choose a constant angular velocity or angular acceleration. Explore how circular motion relates to the bug's x,y position, velocity, and acceleration using vectors or graphs.

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Mindy Gratny
Sam Reid
Wendy Adams
Date Added:
08/02/2011
Masses & Springs
Unrestricted Use
CC BY
Rating
0.0 stars

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Michael Dubson
The Mortenson Family Foundation
Wendy Adams
Date Added:
04/26/2006
Masses & Springs (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Michael Dubson
Wendy Adams
Date Added:
08/02/2009
Maze Game
Unrestricted Use
CC BY
Rating
0.0 stars

Learn about position, velocity, and acceleration in the "Arena of Pain". Use the green arrow to move the ball. Add more walls to the arena to make the game more difficult. Try to make a goal as fast as you can.

Subject:
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Mindy Gratny
Sam Reid
Wendy Adams
Date Added:
10/30/2006
Microwaves
Unrestricted Use
CC BY
Rating
0.0 stars

How do microwaves heat up your coffee? Adjust the frequency and amplitude of microwaves. Watch water molecules rotating and bouncing around. View the microwave field as a wave, a single line of vectors, or the entire field.

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Ron LeMaster
Wendy Adams
Date Added:
11/15/2007
Microwaves (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

How do microwaves heat up your coffee? Adjust the frequency and amplitude of microwaves. Watch water molecules rotating and bouncing around. View the microwave field as a wave, a single line of vectors, or the entire field.

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Ron LeMaster
Wendy Adams
Date Added:
07/01/2004
Models of the Hydrogen Atom
Unrestricted Use
CC BY
Rating
0.0 stars

How did scientists figure out the structure of atoms without looking at them? Try out different models by shooting light at the atom. Check how the prediction of the model matches the experimental results.

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Kathy Perkins
Michael Dubson
Mindy Gratny
Sam McKagan
Wendy Adams
Date Added:
01/01/2007
Molecular Motors
Unrestricted Use
CC BY
Rating
0.0 stars

Discover what controls how fast tiny molecular motors in our body pull through a single strand of DNA. How hard can the motor pull in a tug of war with the optical tweezers? Discover what helps it pull harder. Do all molecular motors behave the same?

Subject:
Biology
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Kathy Perkins
Meredith Betterton
Mike Dubson
Tom Perkins
Wendy Adams
Date Added:
12/01/2007
Molecular Motors (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Discover what controls how fast tiny molecular motors in our body pull through a single strand of DNA. How hard can the motor pull in a tug of war with the optical tweezers? Discover what helps it pull harder. Do all molecular motors behave the same?

Subject:
Biology
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Kathy Perkins
Meredith Betterton
Michael Dubson
Thomas Perkins
Wendy Adams
Date Added:
12/01/2007
Moving Man
Unrestricted Use
CC BY
Rating
0.0 stars

Learn about position, velocity, and acceleration graphs. Move the little man back and forth with the mouse and plot his motion. Set the position, velocity, or acceleration and let the simulation move the man for you.

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Sam Reid
Wendy Adams
Date Added:
10/04/2005
Neuron
Unrestricted Use
CC BY
Rating
0.0 stars

Stimulate a neuron and monitor what happens. Pause, rewind, and move forward in time in order to observe the ions as they move across the neuron membrane.

Subject:
Biology
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
John Blanco
Katherine Perkins
Noah Podolefsky
Wendy Adams
Date Added:
10/01/2010