Search Results (19)

View
Selected filters:
  • Sam McKagan
Alpha Decay
Conditions of Use:
No Strings Attached
Rating

Watch alpha particles escape from a polonium nucleus, causing radioactive alpha decay. See how random decay times relate to the half life.

Subject:
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
John Blanco
Kathy Perkins
Noah Podolefsky
Ron LeMaster
Sam McKagan
Wendy Adams
Date Added:
07/21/2011
Conductivity
Conditions of Use:
No Strings Attached
Rating

Experiment with conductivity in metals, plastics and photoconductors. See why metals conduct and plastics don't, and why some materials conduct only when you shine a flashlight on them.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Sam McKagan
Sam Reid
Wendy Adams
Date Added:
07/01/2004
Davisson-Germer: Electron Diffraction
Conditions of Use:
No Strings Attached
Rating

Simulate the original experiment that proved that electrons can behave as waves. Watch electrons diffract off a crystal of atoms, interfering with themselves to create peaks and troughs of probability.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Sam McKagan
Sam Reid
Date Added:
10/02/2006
Double Wells and Covalent Bonds
Conditions of Use:
No Strings Attached
Rating

Explore tunneling splitting in double well potentials. This classic problem describes many physical systems, including covalent bonds, Josephson junctions, and two-state systems such as spin 1/2 particles and ammonia molecules.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Kathy Perkins
Sam McKagan
Date Added:
10/04/2006
Fourier: Making Waves
Conditions of Use:
No Strings Attached
Rating

Learn how to make waves of all different shapes by adding up sines or cosines. Make waves in space and time and measure their wavelengths and periods. See how changing the amplitudes of different harmonics changes the waves. Compare different mathematical expressions for your waves.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Danielle Harlow
Sam McKagan
Date Added:
10/02/2006
Models of the Hydrogen Atom
Conditions of Use:
No Strings Attached
Rating

How did scientists figure out the structure of atoms without looking at them? Try out different models by shooting light at the atom. Check how the prediction of the model matches the experimental results.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Kathy Perkins
Michael Dubson
Mindy Gratny
Sam McKagan
Wendy Adams
Date Added:
01/01/2007
Neon Lights & Other Discharge Lamps
Conditions of Use:
No Strings Attached
Rating

Produce light by bombarding atoms with electrons. See how the characteristic spectra of different elements are produced, and configure your own element's energy states to produce light of different colors.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Ron LeMaster
Sam McKagan
Date Added:
09/13/2006
Nuclear Fission
Conditions of Use:
No Strings Attached
Rating

Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control energy production in a nuclear reactor! (Previously part of the Nuclear Physics simulation - now there are separate Alpha Decay and Nuclear Fission sims.)

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
John Blanco
Kathy Perkins
Noah Podolefsky
Ron LeMaster
Sam McKagan
Wendy Adams
Date Added:
07/19/2011
Optical Quantum Control
Conditions of Use:
No Strings Attached
Rating

Explore an active area of research in optical physics: producing designer pulse shapes to achieve specific purposes, such as breaking apart a molecule. Carefully create the perfect shaped pulse to break apart a molecule by individually manipulating the colors of light that make up a pulse.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Sam McKagan
Date Added:
11/01/2005
Quantum Bound States
Conditions of Use:
No Strings Attached
Rating

Explore the properties of quantum "particles" bound in potential wells. See how the wave functions and probability densities that describe them evolve (or don't evolve) over time.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Kathy Perkins
Sam McKagan
Date Added:
10/02/2006
Quantum Tunneling and Wave Packets
Conditions of Use:
No Strings Attached
Rating

Watch quantum "particles" tunnel through barriers. Explore the properties of the wave functions that describe these particles.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Kathy Perkins
Sam McKagan
Date Added:
08/28/2006
Quantum Wave Interference
Conditions of Use:
No Strings Attached
Rating

When do photons, electrons, and atoms behave like particles and when do they behave like waves? Watch waves spread out and interfere as they pass through a double slit, then get detected on a screen as tiny dots. Use quantum detectors to explore how measurements change the waves and the patterns they produce on the screen.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Sam McKagan
Sam Reid
Wendy Adams
Date Added:
09/09/2006
Rutherford Scattering
Conditions of Use:
No Strings Attached
Rating

How did Rutherford figure out the structure of the atom without being able to see it? Simulate the famous experiment in which he disproved the Plum Pudding model of the atom by observing alpha particles bouncing off atoms and determining that they must have a small core.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Kathy Perkins
Michael Dubson
Sam McKagan
Wendy Adams
Date Added:
03/01/2007
Simplified MRI
Conditions of Use:
No Strings Attached
Rating

Is it a tumor? Magnetic Resonance Imaging (MRI) can tell. Your head is full of tiny radio transmitters (the nuclear spins of the hydrogen nuclei of your water molecules). In an MRI unit, these little radios can be made to broadcast their positions, giving a detailed picture of the inside of your head.

Subject:
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Michael Dubson
Ron LeMaster
Sam McKagan
Date Added:
11/16/2007
Stern-Gerlach Experiment
Conditions of Use:
No Strings Attached
Rating

The classic Stern-Gerlach Experiment shows that atoms have a property called spin. Spin is a kind of intrinsic angular momentum, which has no classical counterpart. When the z-component of the spin is measured, one always gets one of two values: spin up or spin down.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Michael Dubson
Sam McKagan
Date Added:
10/01/2006