This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: The following clip shows the famous opening scene of the movie Raiders of the Lost Arc. At the beginning of the clip, Indiana Jones is replacing the go...
This task provides an opportunity to model a concrete situation with mathematics. …
This task provides an opportunity to model a concrete situation with mathematics. Once a representative picture of the situation described in the problem is drawn (the teacher may provide guidance here as necessary), the solution of the task requires an understanding of the definition of the sine function. When the task is complete, new insight is shed on the ``Seven Circles I'' problem which initiated this investigation as is noted at the end of the solution.
This task is inspired by the derivation of the volume formula for …
This task is inspired by the derivation of the volume formula for the sphere. If a sphere of radius 1 is enclosed in a cylinder of radius 1 and height 2, then the volume not occupied by the sphere is equal to the volume of a Ňdouble-naped coneÓ with vertex at the center of the sphere and bases equal to the bases of the cylinder.
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: The geometry of the earth-sun interaction plays a very prominent role in many aspects of our lives that we take for granted, like the variable length o...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: In the July 2013 issue of United Airlines' Hemisphere Magazine the following article appeared: Write down an equation that describes Captain Bowers' me...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Below is a picture of $\triangle ABC$: Draw a triangle $DEF$ which is similar (but not congruent) to $\triangle ABC$. How do $\frac{|DE|}{|DF|}$ and $\...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: In rectangle $ABCD$, $|AB|=6$, $|AD|=30$, and $G$ is the midpoint of $\overline{AD}$. Segment $AB$ is extended 2 units beyond $B$ to point $E$, and $F$...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Suppose we take a square piece of paper and fold it in half vertically and diagonally, leaving the creases shown below: Next a fold is made joining the...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Milong and her friends are at the beach looking out onto the ocean on a clear day and they wonder how far away the horizon is. About how far can Milong...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Below is a picture of a right triangle $ABC$ with right angle $C$ along with the point $D$ so that $\overleftrightarrow{CD}$ is perpendicular to $\over...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: In the two triangles pictured below $m(\angle A) = m(\angle D)$ and $m(\angle B) = m(\angle E)$: Using a sequence of translations, rotations, reflectio...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Suppose $0 \lt a \lt 90$ is the measure of an acute angle. Draw a picture and explain why $\sin{a} = \cos{(90 -a)}$ Are there any angle measures $0 \lt...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: In the picture below, points $A$ and $B$ are the centers of two circles and they are collinear with point $C$. Also $D$ and $E$ lie on the two respecti...
Thumbnail Image: "creative quote" by Sean MacEntee is licensed under CC BY 2.0 This lesson plan is on …
Thumbnail Image: "creative quote" by Sean MacEntee is licensed under CC BY 2.0 This lesson plan is on how I would implement a Genius Hour Project into my classroom. It has some ideas of how to get started with your students, how to help students reflect on their project each day, ideas of final projects, a final project rubric to guide students in their presentation, and an idea of how to share and recognize the students' great work.
To answer the inevitable question of "Why are we doing math?" we …
To answer the inevitable question of "Why are we doing math?" we will create a slide presentation of 10 different career fields, how math is used in those fields , and what degree is required to work in that field. Bonus points are awarded for unique career fields that other students did not come up with.
This lesson is a fun way to help students understand that geometry …
This lesson is a fun way to help students understand that geometry is all around us! Students will have the opportunity to explore structures both virtually and in-person, helping them discover the significance of angles and shapes in architecture.Image Credit: "DSC_2072 geometry in architecture - Manchester" by Filip Patock is licensed under CC BY-NC-ND 2.0 via Flickr
This is a simple task addressing the distinction between correlation and causation. …
This is a simple task addressing the distinction between correlation and causation. Students are given information indicating a correlation between two variables, and are asked to reason out whether or not a causation can be inferred. The task would be well-suited either as an introduction to this distinction, or as an assessment item.
The purpose of this lesson is to show students how to break …
The purpose of this lesson is to show students how to break up land division and survey their own property. Students will gain a knowledge of how surveyor's come about dictating property lines. The lesson gives a greater understanding of Law of Cosines and Heron's Formula. Image Reference:Lars H. Rohwedder, Sarregouset - Own work from source files Image:OgaPeninsulaAkiJpLandsat.jpg (GFDL) and Image:Orthographic Projection Japan.jpg (GFDL and CC-By-SA).
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.